

Risk factor and principles of urogenital fistula formation and repair in prostate cancer treatment

Seung Hwan Lee Department of Urology, Severance Hospital, Yonsei University College of Medicine

Urinary Tract Fistula

Most fistula in the industrialized world are iatrogenic.

Congenital anomalies, malignancy, inflammation and infection, radiation therapy, **iatrogenic (surgical)** or external tissue trauma, ischemia, parturition, and a variety of other processes

 Considerable emotional and psychologic distress often accompanies the diagnosis and subsequent treatment.

Urinary Tract Fistula

Urogynecologic Fistula

Vesicovaginal, Ureterovaignal, Vesicourterine, Urethrovaginal Fistula

Uroenteric Fistula

Vesicoenteric, Ureteroenteric, Pyeloenteric, Urethrorectal (Rectourehral) Fistula

Urovascular Fistula

Renovasulcar, Pyelovasulcr, Ureterovascular Fistula

Others.. Urianry leak after renal preservation/ renal transplantation surgery

Risk factor

	Patients,	p value	
	No rectal injury	Rectal injury	
Total number of patients	611 394 (99.5)	2900 (0.5)	
Age			0.01
≤58 yr	218 272 (35.8)	902 (31.1)	
59-65 yr	210 276 (34.4)	975 (33.6)	
≥66 уг	181 392 (29.8)	1023 (35.3)	
Race			< 0.001
White	377 428 (61.7)	1581 (54.5)	
African ancestry	55 333 (9.1)	445 (15.3)	
Hispanic	27 014 (4.4)	148 (5.1)	
Other	23 724 (3.9)	144 (5.0)	
Unknown	127 896 (20.9)	582 (20.1)	
Insurance status/payer type			< 0.001
Medicare	183 644 (30.0)	1067 (36.8)	
Medicaid	11 481 (1.9)	91 (3.1)	
Private/self	398 253 (65.1)	1648 (56.8)	
Other	17 147 (2.8)	87 (3.0)	
Elixhauser comorbidity score			0.3
0	300 734 (49.2)	1441 (49.7)	
1	182 855 (29.9)	793 (27.3)	
≥2	127 806 (20.9)	666 (23.0)	
Hospital region			0.1
Northeast	118 384 (19.4)	509 (17.6)	
Midwest	149 442 (24.4)	632 (21.8)	
South	206 965 (33.9)	1143 (39.4)	
West	136 603 (22.3)	616 (21.2)	

Hospital location			0.001
Rural	32 954 (5.4)	255 (8.8)	
Urban	574 946 (94.0)	2616 (90.2)	
Hospital type			0.001
Nonteaching	220 999 (36.2)	1278 (44.1)	
Teaching	386,901 (63.3)	1593 (54.9)	
Annual hospital RP volume			< 0.001
Low (1-43)	334 524 (54.7)	2028 (69.9)	
High (>43)	276 871 (45.3)	872 (30.1)	
Surgical approach			< 0.001
Open	412 182 (67.4)	2379 (82.0)	
Laparoscopic	38 084 (6.2)	142 (4.9)	
Robotic	161 129 (26.4)	379 (13.1)	
Year			0.01
2003-2005	153 859 (99.5)	838 (0.6)	
2006-2008	231 932 (99.5)	1090 (0.5)	
2009-2012	225 603 (99.6)	972 (0.4)	
Obesity (BMI >30 kg/m ²)	35 148 (5.7)	102 (3,5)	0.02
Metastatic disease	11 543 (1.9)	122 (4.2)	√ ≤0.001
Benign prostatic hyperplasia	4772 (0.8)	54 (1.9)	V \0.004
History of radiation therapy	1048 (0.2)	10 (0.3)	0.3
History of enteritis	1179 (0.2)	10 (0.3)	[40.45]

RP = radical prostatectomy; BMI = body mass index.

^a Cells that do not sum to the total number for the column represent missing data from the National Inpatient Sample database.

Risk factor

Table 3 – Multivariable analysis of risk factors for rectal injury during radical prostatectomy

	OR (95% CI)	p value
Age in years	1.00 (0.99-1.02)	0.5
Race		
White	Reference	
African ancestry	1.60 (1.21-2.13)	< 0.01
Hispanic	1.21 (0.82-1.78)	0.3
Other	1.27 (0.80-2.03)	0.3
Unknown	0.91 (0.69-1.19)	0.5
Elixhauser comorbidity score		
0	Reference	
1	0.94 (0.74-1.18)	0.6
≥ 2	1.05 (0.82-1.36)	0.7
Insurance status/payer type		
Medicare	Reference	
Medicaid	0.85 (0.43-1.67)	0.6
Private/self	0.75 (0.58-0.97)	0.03
Other	1.00 (0.60-1.67)	0.9
Surgical approach		
Open	Reference	
Laparoscopic	0.72 (0.44-1.17)	0.2
Robotic	0.38 (0.29-0.50)	< 0.01
Teaching hospital (vs nonteaching)	0.89 (0.71-1.10)	0.3
High-volume hospital (vs low-volume)	0.58 (0.46-0.72)	< 0.01
Obesity (body mass index >30 kg/m ²)	0.56 (0.34-0.93)	0.02
Benign prostatic hyperplasia	2.33 (1.16-4.69)	0.02
Metastatic disease	2.31 (1.53-3.50)	< 0.01

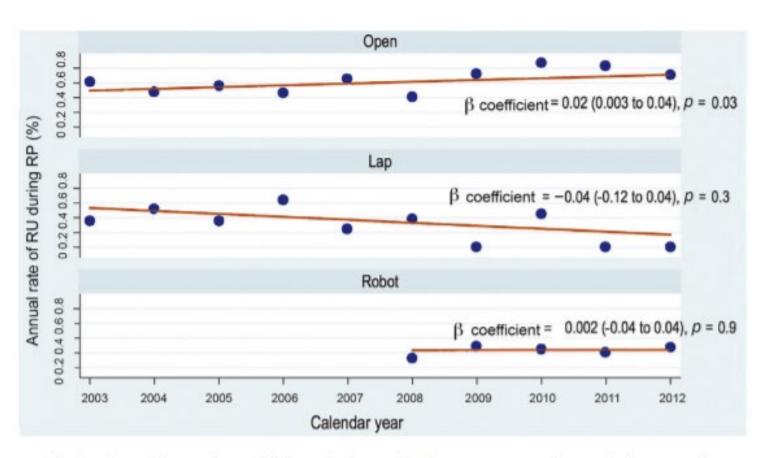


Fig. 1 - Annual rate of rectal injury during radical prostatectomy by surgical approach.

Cause

- Prostatectomy for benign or malignant disease, Cryotherapy, Pelvic radiotherapy, Anorectal surgery, External penetrating trauma, Urethral instrumentation, Locally advanced prostatic or rectal malignancy, Infection, Ruptured prostatic abscess, Inflammatory disease (e.g., Crohn disease)
- RUF after radical retropubic prostatectomy (RRP) is low, but most common cause of RUF.
- Etiology (prostatectomy setting)
 - Rectal injury during radical prostatectomy occurs in less than 1% to 2% of patients
 - Risk factor: Prior history of pelvic radiation therapy, Rectal surgery, TURP

Incidence

- Mayo RRP series, 27 rectal injuries in 2,212 patents, 26 of 27 recognized intraoperatively and repaired, 6 underwent temporary colostomy, 4 developed RUF. (McLaren et al, 1993)
- Rectal injuries in 7 of 516 patients undergoing RRP(1.4%) and 1 of 17 patients undergoing radical perineal prostatectomy (Harpster et al, 1995). -> 3 RUF reported.
- Incidence of RUF after cryosurgical ablation as primary therapy for localized carcinoma of the prostate is 0.5% to 2% (Zippe, 1996; Long et al, 2001). Rate of RUF after cryotherapy as salvage therapy for prostate cancer is somewhat higher at approximately 3.3% (Chin et al, 2001)
- RUF after **brachytherapy** for prostate cancer is **0.4%** (Theodorescu et al, 2000)

Incidence, Risk Factors, Management, and Complications of Rectal Injuries During Radical Prostatectomy

Table 1 – Overview of selected studies with \geq 1000 cases involving rectal injury (RI) during radical prostatectomy (RP).

Study	Year	RP technique	RPs (n)	RIs, n (%)	RAFs (n)
Wedmid et al [5]	2011	RARP	6650	11 (0.17)	4
Kheterpal et al [4]	2011	RARP	4400	10 (0.23)	1
Coelho et al [3]	2010	RARP	2500	2 (0.08)	-
Guillonneau et al [8]	2003	LARP	1000	13 (1.30)	1
Lepor et al [6]	2001	ORP	1000	5 (0.50)	0
McLaren et al [7]	1993	ORP	2212	27 (1.22)	4
Borland et al [2]	1992	ORP	1000	10 (1.00)	0
Present study	2016	ORP	19 965	104 (0.52)	24 ^a
		RARP	4111	9 (0.22)	
		SRP	102	7 (6.86)	

RAF = recto-anastomosis fistula; RARP = robot-assisted RP; LARP = laparoscopic RP; ORP = open RP; SRP = salvage RP.

Rectal injury incidence

Open or robotic RP : 113/24076 : 0.47%

■ Salvage RP : 7/102 : 6.86%

Overall incidence of RUF after RP < 0.1%

^a Of the total 24 RAFs, 13 were with and 11 without intraoperative RI.

Table 2 - Characteristics of patients with and without rectal injury (RI) during radical prostatectomy (RP).

	3 0 1 7		
	RI (n = 120)	No RI (n = 24 058)	p value
Age (yr)	63.2 (58.9-67.6)	63.5 (59.1-68.6)	0.6247
Prostate volume (ml)	43 (31–55)	44 (30–52)	0.8516
Body mass index (kg/m ²)	26.6 (23.9-28.1)	26.6 (24.4–28.4)	0.9885
D'Amico risk group (%)			< 0.001
Low	10.3	33.2	
Intermediate	41.4	47.0	
High	48.3	19.8	
Preoperative PSA (ng/ml)	17.2 (5.7–18.8)	10.1 (4.9–10.7)	0.004
Tumor stage (%)			< 0.001
pT2	32.5	66.1	
pT3	64.2	33.4	
pT4	3.3	0.5	
Pathologic GG (%) [11]			< 0.001
1	12.5	20.7	
2	41.2	55.8	
3	20.8	16.8	
4	2.5	0.9	
5	22.5	5.8	
Node status pN1 (%)	25.8	8.3	< 0.001
PSM (%)	33.3	17.5	< 0.001
Robotic RP (%)	9.2	16.8	0.025

PSA = prostate-specific antigen; GG = Gleason grouping; PSM = positive surgical margin.

Data are presented as mean (interquartile range) for continuous variables.

Mandel et al, European urology focus 4 (2018) 554-557

Symptoms

- Fecaluria, hematuria, UTI
- Nausea, vomiting, fever
- Peritonitis, sepsis

Diagnosis

- Digital rectal examination
- Cystoscopy, sigmoidoscopy; biopsy for local recur...
- VCUG or RGU; definitive diagnosis
- Upper track imaging; excluding ureteral injury.

Symptoms

- Fecaluria, hematuria, UTI
- Nausea, vomiting, fever
- Peritonitis, sepsis

Diagnosis

- Digital rectal examination
- Cystoscopy, sigmoidoscopy; biopsy for local recur...
- VCUG or RGU; definitive diagnosis
- Upper track imaging; excluding ureteral injury.

■ Despite intra-operative closure of the defect with two or three layers, the risk of recto-anastomosis fistula with the need for further surgical intervention is high for defects >2 cm, salvage RP, or suspicion of rectal infiltration.

Principles of Urinary Fistula Management

Ensure adequate nutrition.

Eliminate infection.

Achieve unobstructed urinary drainage and/or stenting.

Remove or bypass distal urinary obstruction.

Beware of malignant cause of fistula.

Principles of Surgical Repair of Urinary Fistula

Adequate exposure of the fistula tract with debridement of devitalized and ischemic tissue

Removal of involved foreign bodies or synthetic materials from region of fistula, if applicable

Careful dissection and/or anatomic separation of the involved organ cavities
Watertight closure

Use of well-vascularized, healthy tissue flaps for repair (atraumatic handling of tissue)

Multiple-layer closure

Tension-free, nonoverlapping suture lines

Adequate urinary tract drainage and/or stenting after repair

Treatment and prevention of infection (appropriate use of antimicrobials)

Maintenance of hemostasis

Management

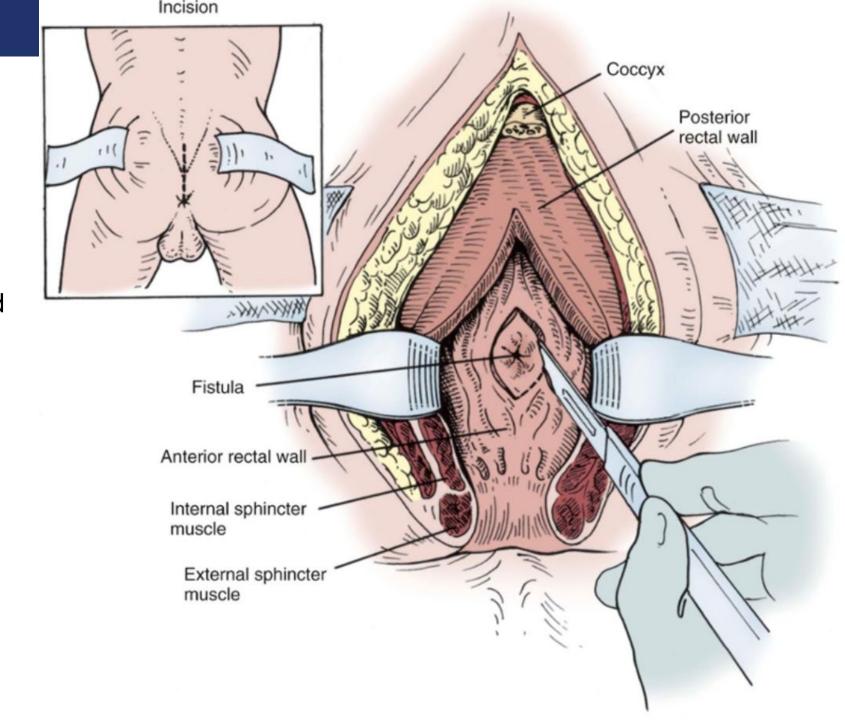
- Conservative management;
 catheter drainage, bowel rest, intravenous hyperalimentation,,
 In some cases, fecal diversion is necessary
- 6 of 8 RUF patients were treated successfully in such a manner. Two patients required a temporary colostomy. (Rassweiler et al, 2003)
- Closure with conservative management in 7 of 13 patients with RUF after radical prostatectomy or cystoprostatectomy. (Noldus et al, 1999)

Surgical repair

Endoscopic suture, fulguration, fibrin glue, minimally invasive management, Open manipulation

Surgical repairs

- Single or staged repair: whether or not to perform fecal diversion at all or whether to perform it before or at the time of repair
- Standard conservative approach: fecal diversion + indwelling urethral catheter
 -> a trial of spontaneous healing of the fistula without open manipulation.
- One-stage approach: surgically induced, small RUFs, not associated with infection, abscess, or poor bowel preparation (Wood and Middleton, 1990; Nunoo-Mensah et al, 2008)
- **Staged repair**: large fistulae, associated with radiation therapy, uncontrolled local or systemic infection, immunocompromised states, or inadequate bowel preparation at the time of definitive repair (Stephenson and Middleton, 1996; Nunoo-Mensah et al, 2008).

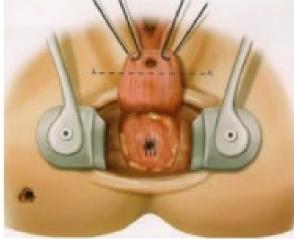


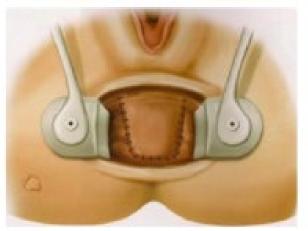
- Transrectal approach
 - With and without division of the anal sphincter
 - York-Mason procedure: transrectal, trans-sphincteric approach that has been found to be effective and to have low morbidity
 - Classically, this is a staged repair with fecal diversion performed before repair of the RUF. However, in patients with small, non-irradiated fistula, a single-stage approach can be used, provided that a vigorous bowel preparation and broadspectrum antibiotics are used
 - In the largest series of patients undergoing the York-Mason procedure, a successful repair in 22 of 24 patients was reported. (Renschler et al, 2003)

 Prone, Jackknife position, full-thickness incision through posterior anus and dorsal rectal wall

 Careful anatomic reapproximation of the layers is necessary to avoid devastating complication..

Transrectal approach


	York-Mason	Kraske
Approach Position	Transsphincteric prone jackknife	Transsacral prone jackknife
	(1) Incision from the sacrococcygeal articulation to the anal verge	(1) Paracoccygeal incision 2–10 cm from the anal verge
	(2) Transection of entire sphincter complex in a layer-by-layer fashion	(2) Dissect down to and divide the anococcygeal ligament
Procedure	(3) Pairs of marking sutures at the mucocutaneous junction for resuture	(3) Resection of S4, S5, and coccyx
	(4) Midline division of the mucosa of the anus and the full thickness of the posterior rectal wall	(4) Midline division of the Waldeyer's fascia
	(5) Sleeve resection or proctotomy	(5) Sleeve resection or proctotomy
Complications	Fecal incontinence, fecal fistula	Fecal fistula



Transanal approach

- Not involve division of the anal sphincter.
- Exposure of the fistula is provided by dilation of the anus and fixed retraction
- The major disadvantage : relatively poor exposure and lack of maneuverability within the operative field.
- Rectal advancement flap
- Latzko procedure

Perineal approach

- Familiar approach for many urologists
- Advantage of local access to a variety of potential interpositional flaps. (Gracilis muscle, pedicled Dartos muscle, penile skin, levator muscle, bladder)

Gracilis Muscle Interposition for Rectourethral Fistula After Laparoscopic Prostatectomy: A Prospective Evaluation and Long-term Follow-up

TABLE 1. Patient epidemiological and clinical baseline data

Age, y	Symptoms	Time with RUF, mo	Digestive diversion	Previous repair attempt (RUF)
60	Pneumaturia	9	Colostomy	Kraske approach
	Fecaluria			
73	Fecaluria	41	Colostomy	Transvesical repair
	Urine per anus			Transanal endoscopic microsurgery ×2
				Low anterior rectal resection
61	Transurethral bleeding	10	Colostomy	None
70	Urine per anus	12	None	None
	Fecaluria			
76	Fecaluria	6	None	None
70	Urine per anus	6	Colostomy	None
	Fecaluria			
72	Urine per anus	24	lleostomy	Left gracilis transposition
				Rectal primary suture
67	Fecaluria	36	Colostomy	Rectal primary suture
56	Fecaluria	9	Loop colostomy	None

RUF = rectourethral fistula.

Gracilis Muscle Interposition for Rectourethral Fistula After Laparoscopic Prostatectomy: A Prospective Evaluation and Long-term Follow-up

February 18, 2016

Gracilis Muscle Interposition for Rectourethral Fistula After Laparoscopic Prostatectomy: A Prospective Evaluation and Long-term Follow-up

TABLE 2. Surgical and postoperative data						
Date of surgery (gracilis)	Operation duration, min	Postoperative stay, d	Analgesic requirements	Morbidity		
November 3, 2009	240	7	Standard ^a	None		
January 13, 2010	160	18	Standard	None		
September 10, 2010	180	8	Standard	None		
October 6, 2010	190	28	Standard + metamizol	Urine through perineal wound during 15 d		
February 9, 2011	180	7	Standard	None		
October 14, 2011	210	16	Standard	Urinary infection		
				Limited urine loss through anus		
January 23, 2014	245	14	Standard	Gastritis		
October 30, 2015	210	4	Standard	None		

Standard

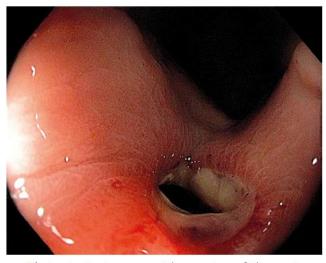
190

None

^aStandard analgesia includes paracetamol + dexketoprofen 3 times per day.

Transabdominal approach

- Limited success
- Principal advantage : availability of greater omentrum for an interpositional flap.
- Potential disadvantage : morbidity, prolonged postop convalescence, poor exposure of OP field.



Endoscopic treatment

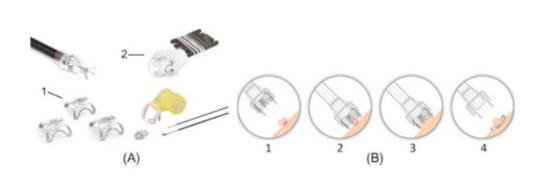

- Minimally invasive Over-the-scope clip (OTSC) method
- For small fistula

Photo 1. Cystography with vesicorectal fistula

Photo 2. Rectoscopy with opening of the vesicorectal fistula

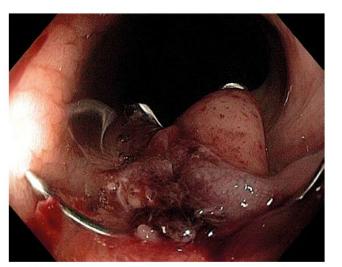


Photo 3. The OTSC placement over the fistula

Photo 4. Cystography with healed fistula

Summary

- Although rare (0.5%), RI results in considerable perioperative morbidity
- RUF after radical retropubic prostatectomy (RRP) is low, but most common cause of RUF
- Lower surgeon volume, prior radiation or rectal surgery, BPH, and more aggressive PCa were independently associated with RI during RP, while obesity, a robotic approach, and high-volume hospitals were independently associated with a lower risk.
- Adequate nutrition, unobstructed urinary drainage is necessary for rectal injury.
- Diverting colostomy seems to be unnecessary in patients with non-aggravating factors, and therefore should only be recommended in cases with infiltration of the rectum, prior prostate surgery, large RI, or salvage RP, but not as a standard of care in all patients with intraoperative RI.

Thank you for your attention